Finding the Missing Pieces: Comprehensive Cerebellar Assessments with Cytarabine Administration

Tara Hinnenkamp
CentraCare Health, tara.hinnenkamp@centracare.com

Follow this and additional works at: https://digitalcommons.centracare.com/nursing_posters

Part of the Other Nursing Commons

Recommended Citation
https://digitalcommons.centracare.com/nursing_posters/59

This Book is brought to you for free and open access by the Posters and Scholarly Works at DigitalCommons@CentraCare Health. It has been accepted for inclusion in Nursing Posters by an authorized administrator of DigitalCommons@CentraCare Health. For more information, please contact schlepers@centracare.com.
CASE STUDY:
Stan (name changed for confidentiality) was a 60 year old male admitted to the hospital with relapsed AML in the summer of 2015 after two years of remission. Stan was first diagnosed three years earlier and subsequently underwent chemotherapy and stem cell transplant with no known neurotoxicity. In 2015, re-induction chemotherapy with Ara-C and Cytoxan was completed in the hospital. Prior to treatment, Stan was walking independently with no functional deficits. Current standard of practice at the St. Cloud Hospital for cerebellar monitoring included having the patient sign his/her name daily.

- Day 1 Post Chemo at 0800: Patient reported increased bilateral lower extremity weakness with walking. IV fluids were initiated. No deficits noted in signing of the name.
- Day 1 Post Chemo at 2300: Patient is now unable to void, requiring ongoing straight catheterizations. Stan reports inability to walk, has significant decreased sensations in bilateral lower extremities. Still able to sign his name without deficits noted.
- Day 2 Post Chemo at 0800: Neurology consulted. Stan reports weakness has reached his bilateral upper extremities. MRI of lumbar, thoracic, cervical and head all negative. Findings all suggest acute encephalitis and painful peripheral neuropathy as a result of acute cytotoxicity.
- Within several weeks of ongoing therapy, patient had regained all bowel/bladder function and most function and strength in bilateral upper and lower extremities.

DISCUSSION:
- There were several unknown variables to explain why Stan experienced probable neurotoxicity with high-dose therapy. No data was available regarding therapies received prior to transplant. There is a possibility the patient had exceeded the recommended lifetime dose limit and/or had a previous neurotoxic reaction in the past, making him more susceptible.
- The case was discussed with Kathleen Reke, MD of Neurology. Dr. Reke recommends any patients receiving Cytarabine in ANH strength be assessed for neurotoxicity, including assessment of motor strength and function of all four extremities every shift.

WHAT IS CYTARABINE?
Cytarabine (Ara-C) is an anti-metabolite chemotherapy agent used to treat acute leukemia and/lor refractory non-hodgkin's lymphoma. The drug is cell-cycle specific and inhibits DNA synthesis thus halting cell division. The dose - limiting toxicity of this drug is NEUROTOXICITY, especially when given in high-dose concentration (Schno & Kaiser, 2015). This is caused by a widespread loss of Purkinje cells in the cerebellum (Lee & Wen, 2015). With high-dose cytotoxic administration, there is a high concentration of drug that crosses the blood brain barrier in the cerebral spinal fluid with 50% of the chemotherapy still in the plasma concentration (O'Leary, 2004).

WHEN IT BECOMES NEUROTOXIC
- Patient’s receiving high-dose cytotoxic have a 7-28% incidence of developing neurotoxicity, high doses include ≥ 1-3g/m² (Lee & Wen, 2015).
- 10-25% of patient’s develop neurotoxicity when the cumulative dose exceeds 30 grams in a lifetime (Lee & Wen, 2015).
- There is a 60% incidence of cerebellar toxicity reoccurrence for patient’s who showed previous toxicity (O’Leary, 2004).
- Other risk factors include decreased hepatic and/or renal dysfunction and/or age >60 years old (Schno & Kaiser, 2015).
- Symptoms usually develop 2-8 days after initial dose and may persist 3-10 days after discontinuation of therapy (O’Leary, 2004).
- For those >50 years old, symptoms may persist for more than 30 days even if therapy is stopped (O’Leary, 2004).
- Up to 30% of patients may not regain normal cerebellar function (O’Leary, 2004).
- Symptoms include gait and balance disturbances, alterations in fine motor skills, memory loss, peripheral neuropathy and/or seizures (Lee & Wen, 2015).

NURSING CONSIDERATIONS
A study conducted at the University of Maryland Greenebaum Cancer Center found that one in four nurses felt there were widespread inconsistencies with cerebellar assessments. One of every two nurses felt the current assessment was incomplete and the patient may be suffering as a result (Schno & Kaiser, 2015). There has to be a better way!

REFERENCES

Tara Hinnenkamp, RN, OCN
St. Cloud Hospital
CENTRACARE Health System

SAMPLES OF ASSESSMENT TOOLS

COMPONENTS OF A COMPREHENSIVE ASSESSMENT
- Nurses need to have the means to accurately and consistently assess and document neurologic changes noted with Cytarabine administration. The assessment tool must be comprehensive, covering several areas of cerebellar function. Assessments should be completed every shift and/or prior to each dose of cytarabine (Brown & Hall, 2010) (O’Leary, 2004).
- The initial assessment and first dose of High-Dose Cytarabine should be completed during the day time hours to promote patient satisfaction and ensure accuracy of assessment (Schno & Kaiser, 2015).
- The assessment should be relatively short in time (approximately 5-10 minutes or less); especially with the increased demands placed on hospital-based nursing care. Tool should be easy to understand for nurses at all skill levels and integrated into current charting practice (Brown, 2010).
- If the patient fails any aspect of the assessment, the upcoming dose should be held and the oncologist notified immediately. If the patient is to receive medications that may alter gross motor skills, such as narcotics, a cerebellar assessment should be completed prior to administration to ensure accuracy of the assessment (O’Leary, 2004).
- Crucial components of cerebral and cerebellar functional assessments include: (Brown, 2010) (Schno & Kaiser, 2015)
 - Gait and balance: Watch for signs of arrhythmia or asymmetry. This is best completed by patient walking heel to toe in straight line.
 - Handwriting: Most often monitored by signing his/her name; preference to utilize a skill that usually doesn’t change over time.
 - Speech Pattern: Have patient state name, date, time, and situation.
 - Body Tremors: Monitor for tremors while standing or walking.
 - Nystagmus: When present, this will cause involuntary rapid eye movement when attempting to focus on an object.
 - Rapid alternating hand movements: Patient will put hands on thighs in rhythmic motion as fast as possible without losing coordination.
 - Romberg Test: Measures three sensory systems in cerebellum to maintain stability, including vision, proprioception and vestibular sense.

TO complete successfully, patient will stand with feet together and eyes closed for 5-10 seconds. (Brown, 2010) (Schno & Kaiser, 2015)